ON APPROXIMATE ISOMORPHISMS BETWEEN BANACH *-ALGEBRAS OR $C^*$-ALGEBRAS
نویسندگان
چکیده
منابع مشابه
Isomorphisms in unital $C^*$-algebras
It is shown that every almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...
متن کاملModule approximate amenability of Banach algebras
In the present paper, the concepts of module (uniform) approximate amenability and contractibility of Banach algebras that are modules over another Banach algebra, are introduced. The general theory is developed and some hereditary properties are given. In analogy with the Banach algebraic approximate amenability, it is shown that module approximate amenability and contractibility are the same ...
متن کاملBounded Approximate Character Amenability of Banach Algebras
The bounded approximate version of $varphi$-amenability and character amenability are introduced and studied. These new notions are characterized in several different ways, and some hereditary properties of them are established. The general theory for these concepts is also developed. Moreover, some examples are given to show that these notions are different from the others. Finally, bounded ap...
متن کاملContinuity of Lie Isomorphisms of Banach Algebras
We prove that if A and B are semisimple Banach algebras, then the separating subspace of every Lie isomorphism from A onto B is contained in the centre of B. Over the years, there has been considerable effort made and success in studying the structure of Lie isomorphisms of rings and Banach algebras [2–5, 7–15]. We are interested in investigating the continuity of Lie isomorphisms of Banach alg...
متن کاملisomorphisms in unital $c^*$-algebras
it is shown that every almost linear bijection $h : arightarrow b$ of a unital $c^*$-algebra $a$ onto a unital$c^*$-algebra $b$ is a $c^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in a$, all $y in a$, and all $nin mathbb z$, andthat almost linear continuous bijection $h : a rightarrow b$ of aunital $c^*$-algebra $a$ of real rank zero onto a unital$c^*$-algebra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2006
ISSN: 1027-5487
DOI: 10.11650/twjm/1500403813